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In this paper, exact solutions are constructed for stationary elec~
ron beams that are degenerate in the Cartesian (x, y, z), axisymmetric
(r,8,z), and spiral (in thé planes y = const (u,y, v)) coordinate systems.
The degeneracy is determined by the fact that at least two coordinates
in such a solution are cyglic or are integrals of motion. Maiply, rota~-
tional* beams are considered. Invariant solutions for beams in which
the presence of vorticityresulted in a linear dependence of the elec-
tric~field potential ¢ on!the above coordinates were considered in [1].
In degenerate solutions, the presence of vorticity results in a quadratic
or more complex dependence of the potential on the coordinates that
are integrals of motion. In [2]* and in a number of papers referred to
in [2], the degenerate states of irrotational beams are described. The
known degenerate solutidj)ns for rotational beams apply to an axisym-
meuic one~-dimensional (r) beam with an azimuthal velocity compo~
nent [3] and to relativistic conical fiow [1]. The equations used below
follow from the system of electron hydrodynamic equations for a sta~-
tionary relativistic beam;
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where qB denotes orthoggnal coordinates with the metric tensor gBB
(8=1,2,3) Ag is the mhgnetic potential; Vg = (ug/u)c is the elec-
tron velocity; p is the scalar space-charge density (p > 0); is the
energy in eV; p,, is the generalized momentum of an electron per
unit mass; 7is the electron charge-mass ratio.

§1. Solenoidal beams. Solufions are constructed
below for plane and‘; axisymmetric rotational beams,
all of whose parameters are integrals of motion.

1.1. An axisymmetric and one-dimensional (r)
beam with four velq;city components (0, ug, uz, and
—u) is described by the equations
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System (1.1) imposes only one condition on the three
arbitrary functions ; & (r), pg(r), and p,(r). This in-

determinacy is removed if the specific method of beam
formation is taken into account.

Let beam (1.1) be formed under axisymmetric and
stationary conditions. Then & and py are integrals of
motion and are defined in terms of the field potentials
on the cathode surface r = rk(z):
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The electron current along z, which is bounded by
the trajectory tube
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is also an integral of motion. The setting of these quan-
tities, which are determined by characteristics of the
gun, adds two deficient conditions: & = & (J) and pg =
= py{J). On the other hand, the problem can be formu-
lated actively [4]: namely, determine the conditions of
beam formation by assigning the motion parameters.
Let, for example, the cathode be equipotential, gy =
= — &= 0, and let it be required to calculate the beam
in a homogeneous magnetic field H in the absence of
rotation ug = 0. From (1.1) follows the solution
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Hence, we obtain the formation conditions
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where ry is the characteristic radius of the beam.

Let us assume that when &= 0 and Hy # 0 a non-
relativistic beam must have a uniform axial velocity
Vy = V = const. Then it is easy to obtain
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*Here and below, a rotational beam is a beam with a rotational
field of generalized momentum.

*Note that the second example in §6 of [2] is incorrect.



where ry and ry are characteristic radii; 0, Hy, and
H, are the components of the external magnetic field;
Q is the charge on an internal rod that can be situated
in the field of the beam.

1.2. The system of equations of a plane, one-di-
mensional (x) beam with four-velocity (0, uy, Ug, and
—u) has the form
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System (1.5) admits of the integral
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Let the beam at & = 0 have a uniform velocity along
the y~axis: uy = pu, B = const. In this case,

]=—k*=const. (1.6)

u=>1—p)" chy, u, = shp,
dnne?p = () - thy,
v = (cla)z, p," = — (cla) B (1 — P*)7" cthp,
o sh = B (1 — B @shy — 1),

where a and aare arbitrary constants. Integration of
the last equation gives
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A beam with a uniform space-charge density is ob-
tained if

NetE = (@ —a)u, p, = —0) e,
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then

(4mn/ ¢®) p = ak?®, u = Bchhz,

uy = Byshkz, u, = B, shks,
where B, By, and By are constants, and BY= Bg,
+ B As distinct from an irrotational béam [2], the
charge density is increased by a factor of a.

1.3. A plane two-dimensional (x,y) beam with four-
velocity components (0, uy(x,z), 0, and —u) satisfies
the equations
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For py= = 0, the solution is known [5]:
u=chf, u,=shf, (dm/c?)p = (V/)? (1.8)
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If we let u = chy and uy = sh¥ in (1.7), we obtain
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from which it follows that for any dependence ¥(f)
L, =shv —acSchq;df, g chw—aSshwdf,
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where « is an arbitrary constant, In particular, when
¥ = f, solution (1.9) differs from irrotational solution
(1.8) by the coefficient q.

1.4. An axisymmetric two-dimensional (r,z) beam
with (0, ug, 0, and —u) is defined by the equations

(1.10)
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The relation py = 7/w, where w= const is the angu-
lar velocity, leads to the case of uniform beam rota-
tion

w= (1— B, up=rp(l— B2,

Here, system (1.10) reduces to a linear equation
for &’

B=ro/ec.
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At the nonrelativistic limit, it follows from (1.10) that
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If a certain relation pg = pg(F) is given, the first two equations re- -
duce to one for F. Let pg = 1gF, where 1y = const; then

2N'E =ro?l?, 2nQ = (r®—ro?) F2?,
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i.e., the problem reduces to a linear equation for F. When F=w=
= const, we obtain a nonrelativistic equivalent of the example ex~
amined above:
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The function ¥ must be found from (1.11) as § - 0.

§2. A relativistic plane beam. Let the beam have a
two-valued velocity of the form uy = +wl(z), i.e., let
it consist of two subcurrents that move in opposition
along the z-axis. Let the subcurrent densities equal
p/2 and give a total charge density in the beam of p

%pw=0, p=I/ew, [ = const. 2.1)

In this case, there is no beam current along the
z-axis, but there is a so-called rotational current of
/2.

Solutions are constructed below for beams with density (2.1), in
which the electron current is directed along the cyclic coordinate.
These beams can be interpreted as single-flow beams with the current
1 along the z~axis only when the limitation on beam width is sufficient
to make the magnetic field of the current I negligible.

2.1. A plane irrotational beam with four-velocity
components

Uy (2), uy == a (z) sh [kz +$ (2}, u; = +w, w=ach [kz + ],

satisfies the equations
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where V2 is defined by (1.8). Then the problem re-
duces to a one-dimensional equation for a, ux, and ¥
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Equations (2.3) admit the integrals
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= A*w + b (b, d = const).

The case of k = 0 is considered in [6]. Let uyx = 0
and k # 0. Then
1 w(w)
wire =0
- 2 2 2,,,3 (2.5)
Uzm(i—}-w — mPw — n*wd).
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Following [7], we can say that Eq. (2.5) describes
the motion a fictitious particle with the energy b in a
field with the potential U. From Fig. 1 we can de-
termine the reversal point of the particle wy, for var-
ious b. With a uniform space charge (b = 0), there are
two reversal points: w = 0 and w = wy,. In this case,
the motion is periodic and can be represented as the
waves w along the z-axis. For the wavelength L (Fig.
2)

w,
AL—2\ Vwdw .
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At the nonrelativistic limit, this solution becomes
the known solution of [8], which describes that wavy
perturbation of the potential along the z-axis which is
superposed on a plane Brillouin beam.

2.2. The solution in the preceding paragraph can be
extended fo a rotational beam with four-velocity com-
ponents

0,uy, =a(z) sh kz,

(2.8)
U, = =wi(z), u=af(z) chhzx.
If we take the momentum Py and the energy in the
form
py =cpshkx, n& = c®p ch ke, 2.7)

p = const, k = const,

the equation (n/c)ud & = uydpy is satisfied, and it re~
mains to solve the equations for the field:
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Substitution of (2.6) and (2.7) into (2.8) gives

a”+k2(d~—p)=%a, at—1 =u?, }»585:;' I

As a result, we obtain an equation for w:
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b=const, n=1IF/h, 0= pk®\2.

Figure 3 gives graphs of U(w), from which we can
find the reversal point wy, when U(wm) = b.

In the case of total space charge (b = 0), the equa-
tion describes the periodic waves w(z) with amplitude
wm (Fig. 4) and the length L:
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At the nonrelativistic limit, we have
+ 4z = o~ [aresin Y aw— Y ow (I — ow)],
a=nt—1/29.

It is apparent that with a rather intense vorticity
& > 2n’, the solution becomes aperiodic.
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§3. An axial nonrelativistic beam. Solutions for a
nonplane beam that are similar to those in$2 can be
constructed only in the nonrelativistic case.

3.1. The equations for an axisymmetric beam have
the form

V2 v
VA4t =2(p+8), nd8=—dps,

(3.1)
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where H is a uniform axial magnetic field. These equa~
tions are satisfied with the assumption that V, = V(z)
and Vg = Vp(r), if we let

Q=xp,7+2QlIn(r/r)+ Y Vi,

3.2
pp = const, Q@ = const, (5.2)

As a result we obtain an equation for V
V dV/da)? =4an(IV — Y0, V2 + b,

b = const.

In the case of b = 0, two types of solutions are ob-
tained:

z = 4—22- I (ot —sinwf), s=1, (3.3)
7= 42:' I(ot—shot), s =—1,
s = signp,, % = |4mnp, |, dt =V ldz.

Solution (3.3) coincides with that obtained from the
approximate paraxial equation in [9). However, the
precise conditions for realization of the beam in ques~
tion differ from the approximate ones in [9). From
(8.1) and (3.2), we have expressions for  and py:

ME =r2(: Qr*+ pg)? —
— Y, s —4n Qlur/r (3.4)
po= 4 [V, (2 — 2 su)rt — 2 nQ 2122 (3.5)

In particular, if there is no core inside the beam,
Q=0 and
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where J is the electron current,* which is determined
by (1.3).

3.2. The solution for an irrotational axisymmetric
beam of the form of (3.3) can be extended to an ellip-
tic beam [8]. When a vortex is introduced into such a

* The nonrelativistic beams considered in § 3 and 4
are interpreted here as single~flow beams.



beam, the solution s = —1 can be realized. Let, for
example,

Px=V1® T Vo, Dy =V T + Va2 ¥y

M€ =ap 2+ 20,1y 0y ‘1‘/2,

where vy, ... are constants. From the

energy integral

and Aygy o v -

VE=2nd=2n(p+8 —Ve V2
Vx:““l/2 Qy+px,Vy:1/2Qx+py, (3.7)

where H, = (c/n) Q is a uniform magnetic field, it fol-
lows that

@ @/ d? = 4n(p — po),
danpy = ¥y + Mo Q2+ 2 vy vy o+ V.

Hence, considering the expression p = I/V,, it is not
difficult to obtain (3.3), since p, can be made negative
by the choice of v, and vy;. In this case, the equations
for the vortex:
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impose four conditions on the seven arbitrary con-

stants vyy, 043, ... . In particular, vy = —vyy, which

means that the velocities Vx and Vy are solenoidal.
8.3. It is interesting to note the solution for an irrctational beam

with a nonsolenoidal velocity in the xy-plane. If we let vy = g,
% =0, and vy + vy = v, it is easy to obtain
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[ = const. (3.8)

from the continuity equation.
Considering (8.8), from the Poisson equation and the energy inte-
gral it is easy to derive an equation for the trajectory z(t):
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The solution of this equation for the case of (0%/0z)g=¢ = 0 has

the form
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Solution (3.9) has meaning up to the first point t;
exp (—vt) = cos wfy, — (v / o) sin o4, q’t:n =0

at which a virtual cathode is formed.

§4, A spiral nonrelativistic beam. By separating
the variables in the spiral u~ and v-coordinates

z+ iz =ryexp byu+byv+ ibyv—buwl, (4.1)
r3, = (b% -+ b%)~! = coust,

we can obtain degenerate solutions for rotational beams.

This question is considered below and applied to atwo-

dimensional (x,z) plane nonrelativistic beam with ve-

locity components {9y /9x, Vy, 9x/0z) and vorticity in
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the component
Vy=mcl4, +p,. (4.2)
The equations of a plane beam have the form
V2A, =0, Vo = 4mp, V (pVy) =0,
M +& =V +V2,ndé/dp, =V,
where V is defined by (1.8).

We convert in (4.2) to the u- and v-coordinates, and
let

4 =401, €=80), y=1y 0,

it is easy to obtain

eI 2 = D = e 2 (g — ),

2y =V, —2n8, 04, =0, (4.3)
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w =dy/du, Q = const.
If the arbitrary functions ¥ and J are defined as

P o= bt pe I o 2byy Q Ay, J = e, (4.4)



where py, Q, I, and ¥, are constants, we obtain

O 4bgt® = & v gy oo Y I (4.5)

du? w

The cases of polar symmetry (r, y, and §) that fol-
low from (4.5) appear the simplest.
4.1. In the case of an azimuthal dependence

by =0, b, =1/ry, r=ryexp @iry), 8 = ulres
it follows from (4.5) that

SO/ dP+ 4D = (4.6)
=417 2D —4nap,ry.

When py = 0, Eq. (4.6) becomes the known equation
for a beam with one velocity component (Vy = 0) [10].

From (4.6) follows the integral

wz(dw/d6)2=b—“U, UEw4+[3w2——w’ (4.7)

w= YInd /v, = pVo/ 21,

V3 =8umy Iry.
Figure 5 shows the potential well U as a function of
B. In the case of b= 0, we have solutions Ulwy) = 0,
periodic in 6, for any p with amplitude wy, and wave-
length

w,

em —9 m Vv—z;dw . (4.8)
g Vi—Pw—u

If the beam occupies the entire plane, the wave pe- ‘

riod w{¢) must be a multiple of 27, as is arbitrarily
represented by the points in Fig. 6. In particular, for
B = 0 precisely one value (k = 3) is found.

In an azimuthal beam, the geometric effect (the
term 4@ in (4.6)) is stronger than the vortex effect,
and (4.6) describes the periodic solutions even for ne-
gative py. The expression for rotational momentum,
which follows from (4.3) and (4.4), has the form

Py =
= —Quv+2bn Q/ Q — (mnpel by Qyexp (—2b,1).

In the opposite case of a radial dependence:
by =0, by=1/ry r= er exp (w/ry), 0 =ulr,
the problem reduces to the equation

: (’%)2 + 4rp,® = 4l ;1,‘ (‘ZT'E — )+
(4.9)
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A periodic solution cannot be constructed here for
&, since the effect of y increases monotonically, and
there is only one point x = 0 where the virtual cathode
can be placed when b= 0: & = d&/dr = 0.

4.2. Tt is interesting to note the solution for an ir-
rotational plane beam in a magnetic field of the form

% A, = dedv, A= A4 cosbu + B sinbyu, (4,10)

which is similar to the solution for a rotational beam
outside a magnetic field.

In fact, if we let & = py = 0 and dx/du = w(u) in (4.2)
and take (4.10) into account, it is easy to obtain in
spiral coordinates

P=T0) /0, Bt =0, g (® 44 i, (11)

92@
du?

)
+ Zyr = 4npexp (— 2bju — 2byw).

Let J(v) be defined by (4.4). Then from (4.10} and
(4.11) we have an equation that coincides with (4.5),
where the constant p, is defined in terms of the am-
plitude of the magnetic potential

M4 p, = b% (4% 4+ B) > 0. (4.12)

In particular, for an azimuthal beam (b; = 0) we
can construct a solution in the form of (4.7) for posi-
tive 8.

Thus, the effect of vorticity in the generalized
momentum of a plane beam is equivalent to the com-
pensating effect of a periodic magnetic field on an
irrotational plane beam with the same geometry.

I thank A. N. Ievlev for assistance in the computa~
tional and graphic work.
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